Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination.
نویسندگان
چکیده
BACKGROUND AND PURPOSE T1-weighted, 3D gradient-echo MR sequences can be optimized for rapid acquisition and improved resolution through asymmetric k-space sampling and interpolation. We compared a volumetric interpolated brain examination (VIBE) sequence with a magnetization-prepared rapid acquisition gradient echo (MP RAGE) sequence and a 2D T1-weighted spin-echo (SE) sequence. METHODS Thirty consecutive patients known or suspected to have focal brain lesions underwent postcontrast studies (20 mL of gadopentetate dimeglumine) with VIBE, MP RAGE, and 2D T1-weighted SE imaging. Source and 5-mm VIBE and MP RAGE reformations, and 5-mm T1-weighted SE images were compared qualitatively and by using signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). SNRs in a gadolinium-doped water phantom were also measured for all three sequences. RESULTS On the source images, SNRs for gray matter (GM) and white matter (WM), and CNRs for WM-to-GM and contrast-enhancing lesion-to-GM were slightly, but significantly higher for the VIBE sequence than for the MP RAGE sequence (P <.05). On 5-mm reformations, WM-to-GM CNR was significantly higher on VIBE and MP RAGE images than on T1-weighted SE images (P <.001), but contrast-enhancing lesion-to-GM CNRs were higher on SE images compared with both gradient-echo sequences (P <.001). Qualitatively, VIBE images showed fewer flow artifacts than did SE and MP RAGE images (P <.05). In the phantom, VIBE SNR was higher than MP RAGE SNR for short T1 relaxation times. CONCLUSION VIBE provides an effective, alternative approach to MP RAGE for fast 3D T1-weighted imaging of the brain.
منابع مشابه
How to do a STRUCTURAL multicenter neuroimaging study
When designing a multicenter trial that includes MR structural imaging, questions about the choice of field strength and RF coil often arise. There are also tradeoffs to consider about spatial resolution, imaging time, acquisition plane, and several other factors. Most structural studies of the brain include a T1-weighted 3D volumetric gradient echo acquisition, either without inversion prepara...
متن کاملT1-weighted three-dimensional magnetization transfer MR of the brain: improved lesion contrast enhancement.
PURPOSE We developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain. METHODS A short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter b...
متن کاملQuantification of blood-brain-barrier permeability dysregulation and inflammatory activity in MS lesions by dynamic-contrast enhanced MR imaging
Objective: Measurement of blood-brain permeability dysfunction in active and chronic MS lesions with T1-weighted dynamic contrast-enhanced MRI to show variation in inflammatory activity Background: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently buta comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have ...
متن کاملStaging urinary bladder cancer: value of T1-weighted three-dimensional magnetization prepared-rapid gradient-echo and two-dimensional spin-echo sequences.
OBJECTIVE The purpose of this study was to evaluate a magnetization prepared-rapid gradient-echo (MP-RAGE) sequence as a three-dimensional T1-weighted MR imaging technique for staging urinary bladder cancer and to compare this technique with a commonly used two-dimensional T1-weighted spin-echo sequence technique. SUBJECTS AND METHODS For 28 consecutive patients with urinary bladder cancer, M...
متن کاملThe effect of inversion times on the minimum signal intensity of the contrast agent concentration using inversion recovery t1-weighted fast imaging sequence
Background :Inversion recovery (IR) pulse sequences can generate T1-weighted images with a different range of inversion time (TI) to suppress or null the signal intensity (SI) for a specified tissue. In this study, we aimed to investigate the effect of TI values on the concentration of the contrast agent, which leads to a minimum signal intensity, using an inversion recovery T1-weighted 3-dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2002